
n Team

01 amanb,labarpr,walthagd,

02 breenjw,eatonmi,runchemr,

03 buqshank,macshake,mcgeevsa,smebaksg

04 correlbn,moravemj,shinnsm,wanstrnj

05 parasby,pedzindm,sheetsjr,

06 cheungkt,foltztm,ngop,

07 hannumed,hugheyjm,weavergg,woodhaal

08 carvers,davidsac,kominet,krachtkq

09
beaversr,duganje,lemmersj,popenhjc

Team number used in repository name:
http://svn.csse.rose-hulman.edu/repos/csse220-201030-vg-teamXX

Sit with your team
(in two rows, so
that you can face
each other)

Check out
VectorGraphics
from SVN

Browse its Planning
folder

Object-Oriented Design

Begin your VectorGraphics project

Analysis

Design

Implementation

Testing

Deployment

Maintenance

Software
Development

 Standardized approaches intended to:
◦ Reduce costs

◦ Increase predictability of results

 Examples:
◦ Waterfall model

◦ Spiral model

◦ “Rational Unified Process”

 Do each stage to completion
 Then do the next stage

Pipe dream model?

Analysis

Design

Implementation

Testing

Deployment

 Repeat phases in a cycle

 Produce a prototype at end of each cycle

 Get early feedback, incorporate changes

 Schedule overruns
 Scope creep

Deployment

Prototype

 Like the spiral model with very short cycles

 Pioneered by Kent Beck

 One of several “agile” methodologies, focused
on building high quality software quickly

 Rather than focus on rigid process, XP
espouses 12 key practices…

 Realistic planning

 Small releases

 Shared metaphors

 Simplicity

 Testing

 Refactoring

 Pair programming

 Collective ownership

 Continuous integration

 40-hour week

 On-site customer

 Coding standards

When you see
opportunity to make

code better, do it

Use descriptive names,
Control-Shift-F, etc

A team project to create a
scalable graphics program.

http://www.rose-hulman.edu/class/csse/binaries/VideoDemos/VectorGraphics220.mov

http://www.rose-hulman.edu/class/csse/binaries/VideoDemos/VectorGraphics220.mov
http://www.rose-hulman.edu/class/csse/binaries/VideoDemos/VectorGraphics220.mov
http://www.rose-hulman.edu/class/csse/binaries/VideoDemos/VectorGraphics220.mov

 A team assignment

◦ So some division of labor is appropriate (indeed,
necessary)

 A learning experience, so:

◦ Rule 1: every team member must participate in
every major activity.

◦ Rule 2: Everything that you submit for this project
should be understood by all team members.

 Not necessarily all the details, but all the basic ideas

 Read the specification

 Exchange contact info – you may want to add
to your planning folder.

 Start working on your first milestone due
Friday
◦ But try to get it done by Thursday so you can get

some feedback in class before it’s graded.

◦ Next slides are some review of CRC cards and UML.

A practical technique

 We won’t use full-scale, formal
methodologies
◦ Those are in later SE courses

 We will practice a common object-oriented
design technique using CRC Cards which then
get turned into your UML class diagram

 Like any design technique,
the key to success is practice

1. Discover classes based on
requirements
 Come from nouns

in the problem description

2. Determine responsibilities
of each class
 Come from verbs

associated with the classes

3. Describe relationships
between classes:

is-a, has-a

May…

Represent single concepts

Circle, Investment

Represent visual elements of

the project

FacesComponent,

UpdateButton

Be abstractions of real-life

entities

BankAccount,

TicTacToeBoard

Be actors

Scanner, CircleViewer

Be utilities

Math

1. Pick a responsibility of the program

2. Pick a class to carry out that responsibility
◦ Add that responsibility to the class’s card

3. Can that class carry out the responsibility by itself?
◦ Yes Return to step 1

◦ No

 Decide which classes should help

 List them as collaborators on the first card

 Add additional responsibilities to the collaborators’ cards

Class
name

Collaborators

Responsibilities

 Spread the cards out on a table
◦ Or sticky notes on a whiteboard instead of cards

 Use a “token” to keep your place
◦ A quarter or a magnet

 Focus on high-level responsibilities
◦ Some say < 3 per card

 Keep it informal
◦ Rewrite cards if they get to sloppy

◦ Tear up mistakes

◦ Shuffle cards around to keep “friends” together

1. Pick a responsibility
of the program

2. Pick a class to carry out
that responsibility

◦ Add that responsibility to the class’s card

3. Can that class carry out the responsibility by itself?
◦ Yes Return to step 1

◦ No

 Decide which classes
should help

 List them as collaborators
on the first card

 Add additional
responsibilities to the collaborators’ cards

 High cohesion

 Low coupling

 Immutable where practical

◦ Document where not

 Inheritance for code reuse

 Interfaces to allow others
to interact with your code

 Classes stay classes

 Responsibilities become properties (methods)

 If attributes (fields) are obvious, add them

 Collaborators are usually has-a relationships

 If is-a relationships are obvious, add them

 You can probably work in parallel as two pairs
◦ Or a subteam can begin work on your Screen Layout

sketches

